Roughness effect on the Neumann boundary condition
نویسنده
چکیده
We study the effect of a periodic roughness on a Neumann boundary condition. We show that, as in the case of a Dirichlet boundary condition, it is possible to approach this condition by a more complex law on a domain without rugosity, called wall law. This approach is however different from that usually used in Dirichlet case. In particular, we show that this wall law can be explicitly written using an energy developed in the roughness boundary layer. The first part deals with the case of a Laplace operator in a simple domain but many more general results are next given: when the domain or the operator are more complex, or with Robin-Fourier boundary conditions. Some numerical illustrations are used to obtain magnitudes for the coefficients appearing in the new wall laws. Finally, these wall laws can be interpreted using a fictive boundary without rugosity. That allows to give an application to the water waves equation.
منابع مشابه
A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملOn a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations
Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملLocalized low - frequency Neumann modes in 2 d - systems with rough boundaries
– We compute the relative localization volumes of the vibrational eigenmodes in two-dimensional systems with a regular body but irregular boundaries under Dirichlet and under Neumann boundary conditions. We find that localized states are rare under Dirichlet boundary conditions but very common in the Neumann case. In order to explain this difference, we utilize the fact that under Neumann condi...
متن کاملSaint-Venant torsion of non-homogeneous anisotropic bars
The BEM is applied to the solution of the torsion problem of non-homogeneous anisotropic non-circular prismatic bars. The problem is formulated in terms of the warping function. This formulation leads to a second order partial differential equation with variable coefficients, subjected to a generalized Neumann type boundary condition. The problem is solved using the Analog Equation Method (AEM)...
متن کامل